
Chapitre 3

Thermodynamique

de sous-systèmes simples

3.1 Thermalisation de deux sous-systèmes

Un système isolé est constitué de deux sous-systèmes fermés 1 et
2 séparés par une paroi immobile, diatherme et imperméable. Initialement,
ils sont à températures T1i et T2i. Le sous-système 1 contient N1 moles de
gaz. L’énergie interne du gaz est donnée par U1 = c1N1RT1, où T1 est la
température du gaz, R est une constante positive et c1 est un coefficient sans
dimension. De manière similaire, il y a N2 moles de gaz dans le sous-système 2
et l’énergie interne du gaz est donnée par U2 = c2N2RT2.

1) Déterminer la température finale Tf du système après thermalisation.

2) Déterminer la variation d’énergie interne ∆U1 i→f due à la thermalisation.

3) Comparer la température initiale T2i du sous-système 2 et la température
finale Tf du système si la taille du sous-système 2 est beaucoup plus grande
que celle du sous-système 1.

3.5 Transfert stationnaire de matière entre deux blocs

Un système est formé de deux blocs contenant une seule substance
homogène, considérés comme des systèmes simples, séparés par une paroi fixe,
diatherme et perméable (fig. 3.1). Le système est maintenu à température T .
Le bloc 1 est maintenu à un potentiel chimique µ1 et le bloc 2 à un potentiel
chimique µ2 où µ1 > µ2. Un transfert stationnaire de matière a lieu entre les
blocs. On note I 0→1

Q et I 0→1
C le courant de chaleur et le courant énergétique

de matière de l’environnement vers le bloc 1, I 1→2
Q et I 1→2

C le courant de cha-

leur et le courant énergétique de matière du bloc 1 vers le bloc 2, et I 2→0
Q

et I 2→0
C le courant de chaleur et le courant énergétique de matière du bloc 2

vers l’environnement. On suppose que le transfert de matière entre l’environne-
ment et chaque bloc a lieu au potentiel chimique du bloc. Durant le transfert
stationnaire de matière et de chaleur :
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Fig. 3.1 Un transfert stationnaire de matière et de chaleur a lieu entre l’environnement et
le bloc 1, le bloc 1 et le bloc 2, et le bloc 2 et l’environnement.

1) Montrer que les sommes du courant de chaleur et du courant énergétique
de matière de l’environnement vers le premier bloc, du premier bloc vers le
deuxième, et du deuxième bloc vers l’environnement sont égales,

I 0→1
Q + I 0→1

C = I 1→2
Q + I 1→2

C = I 2→0
Q + I 2→0

C

2) Montrer que les courants de substance de l’environnement vers le premier
bloc, du premier bloc vers le deuxième et du deuxième bloc vers l’environ-
nement sont égaux,

I ≡ I 0→1 = I 1→2 = I 2→0

3) Déterminer le courant d’entropie IS entre l’environnement et le système et
la source d’entropie ΣS du système.

4) Montrer que le courant de chaleur sortant du système est supérieur au
courant de chaleur entrant,

I 2→0
Q > I 0→1

Q

5) Exprimer le courant énergétique de matière IC de l’environnement vers le
système en termes du courant de substance I, puis en termes de la source
d’entropie ΣS .

6) Justifier que le courant énergétique de matière peut être écrit de la manière
suivante,

IC = RCI
2

et déterminer la résistance RC au transfert de matière de la paroi entre les
blocs.

3.6 Diffusion d’un gaz à travers une paroi perméable

On désire modéliser la diffusion d’un gaz constitué d’une seule sub-
stance à travers une paroi perméable diatherme. On considère un système isolé
contenant N moles de gaz, formé de deux sous-systèmes de volumes identiques
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séparés par une paroi perméable rigide. Le gaz diffuse d’un sous-système à
l’autre. Il y a N1 (t) moles de gaz dans le sous-système 1 et N2 (t) moles dans
le sous-système 2. On modélise les potentiels chimiques en considérant qu’ils
sont proportionnels à la quantité de substance :

µ1

(
N1 (t)

)
=

ℓ

FA

N1 (t)

2τ

µ2

(
N2 (t)

)
=

ℓ

FA

N2 (t)

2τ

où τ > 0 est un temps caractéristique de diffusion, F > 0, le coefficient de
diffusion de Fick, A > 0, l’aire et ℓ > 0, l’épaisseur de la paroi. Initialement, il
y a N0 moles dans le sous-système 1, c’est-à-dire N1 (0) = N0, et N− N0 moles
dans le sous-système 2, c’est-à-dire N2 (0) = N − N0. Déterminer l’évolution
du nombre de moles N1 (t) et N2 (t) dans les sous-systèmes 1 et 2. En déduire
le nombre de moles dans chaque sous-système à l’équilibre.

3.7 Thermalisation par conduction

A

Fig. 3.2 Deux blocs métalliques formés du même métal sont séparés par une paroi diatherme
de section A et d’épaisseur ℓ. Les métaux atteignent un état d’équilibre thermique dû au
transfert de chaleur par conduction à travers la paroi.

Un système isolé est formé de deux blocs métalliques qui sont consti-
tués de N1 et N2 moles du même métal (fig. 3.2). On modélise l’interface entre
les deux blocs comme une fine paroi diatherme métallique de section A, d’épais-
seur ℓ, de conductivité thermique κ et d’énergie interne négligeable. Les énergies
internes des blocs 1 et 2 sont,

U1 (t) = 3N1RT1 (t) et U2 (t) = 3N2RT2 (t)

où R est une constante positive. Les températures initiales des blocs sont dif-
férentes, c’est-à-dire T1 (0) ̸= T2 (0).

1) Déterminer la température finale Tf du système lorsqu’il atteint l’équilibre
thermique au temps tf .

2) Établir le système d’équations différentielles qui décrit l’évolution tempo-
relle couplée des températures T1 (t) et T2 (t) des deux blocs.
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3) Dans le cas particulier où les blocs ont le même nombre de moles de consti-
tuants, c’est-à-dire N1 = N2 = N , montrer que la différence de température
∆T (t) = T1 (t)− T2 (t) décrôıt de manière exponentielle au cours du temps
lors de la thermalisation.

3.9 Amortissement mécanique par transfert de chaleur

Un système isolé de volume V est constitué de deux sous-systèmes,
notés 1 et 2, séparés par une paroi imperméable, diatherme et mobile, de masse
M , d’aire A et de volume négligeable. Les deux sous-systèmes sont à l’équilibre
thermique à température T . Ils sont constitués chacun de N moles de gaz
parfait, ce qui signifie que la pression pi du gaz dans le sous-système i, son
volume Vi, le nombre de moles N et la température T sont liés par l’équation
piVi = NRT où R est une constante positive (sect. 5.6). La masse du gaz est
négligeable par rapport à la masse de la paroi et l’énergie interne de la paroi
est négligeable par rapport à celle du gaz. Initialement, le système n’est pas
à l’équilibre mécanique. On considère que la variation de volume ∆V entre le
volume Vi de chaque sous-système et son volume V0 à l’équilibre mécanique est
petite, c’est-à-dire ∆V ≪ V0.

1) Exprimer la source d’entropie ΣS en termes de la variation de pression entre
les sous-systèmes p1 − p2 et des dérivées temporelles du volume V̇1 et V̈1.

2) Déterminer la différence de pression p1 − p2 entre les sous-systèmes en
écrivant la source d’entropie comme une forme quadratique définie positive,

ΣS =
ξ

T
V̇ 2
1 ⩾ 0

3) Compte tenu du fait que les sous-systèmes sont constitués d’un gaz parfait,
à l’aide d’un développement limité au premier ordre en ∆V/V0, montrer que
l’équation du mouvement de la paroi est celle d’un oscillateur harmonique
amorti,

ẍ+ 2 γ ẋ+ ω2
0 x = 0

où x est la coordonnée du déplacement de la paroi par rapport à la position
d’équilibre. Déterminer l’expression du coefficient de frottement γ et de la
pulsation ω0 des oscillations non amorties.

4) En régime d’amortissement faible, c’est-à-dire γ < ω0, déterminer la période
T des oscillations amorties.


